References
Abdelaal, Tamim, Lieke Michielsen, Davy Cats, Dylan Hoogduin, Hailiang Mei, Marcel J. T. Reinders, and Ahmed Mahfouz. 2019. “A Comparison of Automatic Cell Identification Methods for Single-Cell RNA Sequencing Data.” Genome Biology 20: 194. https://doi.org/10.1186/s13059-019-1795-z.
Adamson, Britt, Thomas M. Norman, Marco Jost, Min Y. Cho, James K. Nuñez, Yuwen Chen, Jacqueline E. Villalta, et al. 2016. “A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response.” Cell 167: 1867–82. https://doi.org/10.1016/j.cell.2016.11.048.
Altman, Naomi, and Martin Krzywinski. 2018. “The Curse(s) of Dimensionality.” Nature Methods 15: 399–400. https://doi.org/10.1038/s41592-018-0019-x.
Andrews, Tallulah S, and Martin Hemberg. 2019. “M3Drop: Dropout-Based Feature Selection for scRNASeq.” Bioinformatics 35: 2865–67. https://doi.org/10.1093/bioinformatics/bty1044.
Bainbridge, Matthew N, Rene L Warren, Martin Hirst, Tammy Romanuik, Thomas Zeng, Anne Go, Allen Delaney, et al. 2006. “Analysis of the Prostate Cancer Cell Line LNCaP Transcriptome Using a Sequencing-by-Synthesis Approach.” BMC Genomics 7: 246. https://doi.org/10.1186/1471-2164-7-246.
Becht, Etienne, Leland McInnes, John Healy, Charles-Antoine Dutertre, Immanuel W H Kwok, Lai Guan Ng, Florent Ginhoux, and Evan W Newell. 2019. “Dimensionality Reduction for Visualizing Single-Cell Data Using UMAP.” Nature Biotechnology 37: 38–44. https://doi.org/10.1038/nbt.4314.
Blondel, Vincent D, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. “Fast Unfolding of Communities in Large Networks.” Journal of Statistical Mechanics: Theory and Experiment 2008: P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008.
Brennecke, Philip, Simon Anders, Jong Kyoung Kim, Aleksandra A KoÅodziejczyk, Xiuwei Zhang, Valentina Proserpio, Bianka Baying, et al. 2013. “Accounting for Technical Noise in Single-Cell RNA-Seq Experiments.” Nature Methods 10: 1093–95. https://doi.org/10.1038/nmeth.2645.
Butler, Andrew, Paul Hoffman, Peter Smibert, Efthymia Papalexi, and Rahul Satija. 2018. “Integrating Single-Cell Transcriptomic Data Across Different Conditions, Technologies, and Species.” Nature Biotechnology 36: 411–20. https://doi.org/10.1038/nbt.4096.
Chen, Geng, Baitang Ning, and Tieliu Shi. 2019. “Single-Cell RNA-Seq Technologies and Related Computational Data Analysis.” Frontiers in Genetics 10: 317. https://doi.org/10.3389/fgene.2019.00317.
Ding, Jiarui, Xian Adiconis, Sean K. Simmons, Monika S. Kowalczyk, Cynthia C. Hession, Nemanja D. Marjanovic, Travis K. Hughes, et al. 2020. “Systematic Comparison of Single-Cell and Single-Nucleus RNA-Sequencing Methods.” Nature Biotechnology. https://doi.org/10.1038/s41587-020-0465-8.
Habib, Naomi, Inbal Avraham-Davidi, Anindita Basu, Tyler Burks, Karthik Shekhar, Matan Hofree, Sourav R Choudhury, et al. 2017. “Massively Parallel Single-Nucleus RNA-Seq with DroNc-Seq.” Nature Methods 14: 955–58. https://doi.org/10.1038/nmeth.4407.
Hafemeister, Christoph, and Rahul Satija. 2019. “Normalization and Variance Stabilization of Single-Cell RNA-Seq Data Using Regularized Negative Binomial Regression.” Genome Biology 20: 296. https://doi.org/10.1186/s13059-019-1874-1.
Hay, Stuart B., Kyle Ferchen, Kashish Chetal, H. Leighton Grimes, and Nathan Salomonis. 2018. “The Human Cell Atlas Bone Marrow Single-Cell Interactive Web Portal.” Experimental Hematology 68 (December): 51–61. https://doi.org/10.1016/j.exphem.2018.09.004.
Holland, Christian H., Jovan Tanevski, Javier Perales-Paton, Jan Gleixner, Manu P. Kumar, Elisabetta Mereu, Brian A. Joughin, et al. 2020. “Robustness and Applicability of Transcription Factor and Pathway Analysis Tools on Single-Cell RNA-Seq Data.” Genome Biology 21: 36. https://doi.org/10.1186/s13059-020-1949-z.
Hwang, Byungjin, Ji Hyun Lee, and Duhee Bang. 2018. “Single-Cell RNA Sequencing Technologies and Bioinformatics Pipelines.” Experimental & Molecular Medicine 50: 96. https://doi.org/10.1038/s12276-018-0071-8.
Islam, Saiful, Amit Zeisel, Simon Joost, Gioele La Manno, Pawel Zajac, Maria Kasper, Peter Lonnerberg, and Sten Linnarsson. 2014. “Quantitative Single-Cell RNA-Seq with Unique Molecular Identifiers.” Nature Methods 11: 163–66. https://doi.org/10.1038/nmeth.2772.
Kiselev, Vladimir Yu, Tallulah S. Andrews, and Martin Hemberg. 2019. “Challenges in Unsupervised Clustering of Single-Cell RNA-Seq Data.” Nature Reviews Genetics 20: 273–82. https://doi.org/10.1038/s41576-018-0088-9.
Kiselev, Vladimir Yu, Kristina Kirschner, Michael T Schaub, Tallulah Andrews, Andrew Yiu, Tamir Chandra, Kedar N Natarajan, et al. 2017. “SC3: Consensus Clustering of Single-Cell RNA-Seq Data.” Nature Methods 14: 483–86. https://doi.org/10.1038/nmeth.4236.
Lahnemann, David, Johannes Koster, Ewa Szczurek, Davis J. McCarthy, Stephanie C. Hicks, Mark D. Robinson, Catalina A. Vallejos, et al. 2020. “Eleven Grand Challenges in Single-Cell Data Science.” Genome Biology 21: 31. https://doi.org/10.1186/s13059-020-1926-6.
Law, Charity W, Yunshun Chen, Wei Shi, and Gordon K Smyth. 2014. “Voom: Precision Weights Unlock Linear Model Analysis Tools for RNA-Seq Read Counts.” Genome Biology 15: R29. https://doi.org/10.1186/gb-2014-15-2-r29.
Lever, Jake, Martin Krzywinski, and Naomi Altman. 2017. “Principal Component Analysis.” Nature Methods 14: 641–42. https://doi.org/10.1038/nmeth.4346.
Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2.” Genome Biology 15: 550. https://doi.org/10.1186/s13059-014-0550-8.
Luecken, Malte D, and Fabian J Theis. 2019. “Current Best Practices in Single-Cell RNA-Seq Analysis: A Tutorial.” Molecular Systems Biology 15: e8746. https://doi.org/10.15252/msb.20188746.
Lun, Aaron T. L., Karsten Bach, and John C. Marioni. 2016. “Pooling Across Cells to Normalize Single-Cell RNA Sequencing Data with Many Zero Counts.” Genome Biology 17: 75. https://doi.org/10.1186/s13059-016-0947-7.
Lun, Aaron T. L., Davis J. McCarthy, and John C. Marioni. 2016. “A Step-by-Step Workflow for Low-Level Analysis of Single-Cell RNA-Seq Data with Bioconductor.” F1000Research 5: 2122. https://doi.org/10.12688/f1000research.9501.2.
Lun, Aaron T. L., Samantha Riesenfeld, Tallulah Andrews, The Phuong Dao, Tomas Gomes, and John C. Marioni. 2019. “EmptyDrops: Distinguishing Cells from Empty Droplets in Droplet-Based Single-Cell RNA Sequencing Data.” Genome Biology 20: 63. https://doi.org/10.1186/s13059-019-1662-y.
Maaten, Laurens van der, and Geoffrey Hinton. 2008. “Visualizing Data Using t-SNE.” Journal of Machine Learning Research 9: 2579–2605. http://www.jmlr.org/papers/v9/vandermaaten08a.html.
McCarthy, Davis J., Kieran R. Campbell, Aaron T. L. Lun, and Quin F. Wills. 2017. “Scater: Pre-Processing, Quality Control, Normalization and Visualization of Single-Cell RNA-Seq Data in R.” Bioinformatics 33: 1179--1186. https://doi.org/10.1093/bioinformatics/btw777.
McGinnis, Christopher S., Lyndsay M. Murrow, and Zev J. Gartner. 2019. “DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors.” Cell Systems 8: 329–337.e4. https://doi.org/10.1016/j.cels.2019.03.003.
McInnes, Leland, John Healy, and James Melville. 2018. “UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction.” arXiv, 1802.03426. http://arxiv.org/abs/1802.03426.
Mereu, Elisabetta, Atefeh Lafzi, Catia Moutinho, Christoph Ziegenhain, Davis J. McCarthy, Adrian Alvarez-Varela, Eduard Batlle, et al. 2020. “Benchmarking Single-Cell RNA-Sequencing Protocols for Cell Atlas Projects.” Nature Biotechnology, 1–9. https://doi.org/10.1038/s41587-020-0469-4.
Nakamura-Ishizu, Ayako, Hitoshi Takizawa, and Toshio Suda. 2014. “The Analysis, Roles and Regulation of Quiescence in Hematopoietic Stem Cells.” Development 141 (24): 4656–66. https://doi.org/10.1242/dev.106575.
Ouyang, John F., Uma S. Kamaraj, Jose M. Polo, Julian Gough, and Owen J. L. Rackham. 2019. “Molecular Interaction Networks to Select Factors for Cell Conversion.” In Computational Stem Cell Biology, edited by Patrick Cahan, 1975:333–61. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-9224-9_16.
Pasquini, Giovanni, Jesus Eduardo Rojo Arias, Patrick Schäfer, and Volker Busskamp. 2021. “Automated Methods for Cell Type Annotation on scRNA-Seq Data.” Computational and Structural Biotechnology Journal 19: 961–69. https://doi.org/10.1016/j.csbj.2021.01.015.
Pratapa, Aditya, Amogh P. Jalihal, Jeffrey N. Law, Aditya Bharadwaj, and T. M. Murali. 2020. “Benchmarking Algorithms for Gene Regulatory Network Inference from Single-Cell Transcriptomic Data.” Nature Methods 17: 147–54. https://doi.org/10.1038/s41592-019-0690-6.
Ranjan, Bobby, Wenjie Sun, Jinyu Park, Kunal Mishra, Florian Schmidt, Ronald Xie, Fatemeh Alipour, et al. 2021. “DUBStepR Is a Scalable Correlation-Based Feature Selection Method for Accurately Clustering Single-Cell Data.” Nature Communications. https://doi.org/10.1038/s41467-021-26085-2.
Replogle, Joseph M., Thomas M. Norman, Albert Xu, Jeffrey A. Hussmann, Jin Chen, J. Zachery Cogan, Elliott J. Meer, et al. 2020. “Combinatorial Single-Cell CRISPR Screens by Direct Guide RNA Capture and Targeted Sequencing.” Nature Biotechnology. https://doi.org/10.1038/s41587-020-0470-y.
Robinson, M. D., D. J. McCarthy, and G. K. Smyth. 2010. “edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26: 139–40. https://doi.org/10.1093/bioinformatics/btp616.
Rozenblatt-Rosen, Orit, Michael J. T. Stubbington, Aviv Regev, and Sarah A. Teichmann. 2017. “The Human Cell Atlas: From Vision to Reality.” Nature 550 (7677): 451–53. https://doi.org/10.1038/550451a.
Saelens, Wouter, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. 2019. “A Comparison of Single-Cell Trajectory Inference Methods.” Nature Biotechnology 37: 547–54. https://doi.org/10.1038/s41587-019-0071-9.
Schwartz, Gregory W., Yeqiao Zhou, Jelena Petrovic, Maria Fasolino, Lanwei Xu, Sydney M. Shaffer, Warren S. Pear, Golnaz Vahedi, and Robert B. Faryabi. 2020. “TooManyCells Identifies and Visualizes Relationships of Single-Cell Clades.” Nature Methods 17: 405–13. https://doi.org/10.1038/s41592-020-0748-5.
Soneson, Charlotte, and Mark D Robinson. 2018. “Bias, Robustness and Scalability in Single-Cell Differential Expression Analysis.” Nature Methods 15: 255–61. https://doi.org/10.1038/nmeth.4612.
Squair, Jordan W., Matthieu Gautier, Claudia Kathe, Mark A. Anderson, Nicholas D. James, Thomas H. Hutson, Rémi Hudelle, et al. 2021. “Confronting False Discoveries in Single-Cell Differential Expression.” Nature Communications 12 (1). https://doi.org/10.1038/s41467-021-25960-2.
Sun, Shiquan, Jiaqiang Zhu, Ying Ma, and Xiang Zhou. 2019. “Accuracy, Robustness and Scalability of Dimensionality Reduction Methods for Single-Cell RNA-Seq Analysis.” Genome Biology 20: 269. https://doi.org/10.1186/s13059-019-1898-6.
Svensson, Valentine. 2020. “Droplet scRNA-Seq Is Not Zero-Inflated.” Nature Biotechnology 38: 147–50. https://doi.org/10.1038/s41587-019-0379-5.
Svensson, Valentine, Roser Vento-Tormo, and Sarah A Teichmann. 2018. “Exponential Scaling of Single-Cell RNA-Seq in the Past Decade.” Nature Protocols 13: 599–604. https://doi.org/10.1038/nprot.2017.149.
Tang, Fuchou, Catalin Barbacioru, Yangzhou Wang, Ellen Nordman, Clarence Lee, Nanlan Xu, Xiaohui Wang, et al. 2009. “mRNA-Seq Whole-Transcriptome Analysis of a Single Cell.” Nature Methods 6: 377–82. https://doi.org/10.1038/nmeth.1315.
The FANTOM Consortium. 2014. “A Promoter-Level Mammalian Expression Atlas.” Nature 507: 462–70. https://doi.org/10.1038/nature13182.
The Tabula Muris Consortium. 2018. “Single-Cell Transcriptomics of 20 Mouse Organs Creates a Tabula Muris.” Nature 562: 367–72. https://doi.org/10.1038/s41586-018-0590-4.
Tian, Luyi, Xueyi Dong, Saskia Freytag, Kim-Anh Le Cao, Shian Su, Abolfazl JalalAbadi, Daniela Amann-Zalcenstein, et al. 2019. “Benchmarking Single Cell RNA-Sequencing Analysis Pipelines Using Mixture Control Experiments.” Nature Methods 16: 479–87. https://doi.org/10.1038/s41592-019-0425-8.
Tirosh, I., B. Izar, S. M. Prakadan, M. H. Wadsworth, D. Treacy, J. J. Trombetta, A. Rotem, et al. 2016. “Dissecting the Multicellular Ecosystem of Metastatic Melanoma by Single-Cell RNA-Seq.” Science 352: 189–96. https://doi.org/10.1126/science.aad0501.
Tran, Hoa Thi Nhu, Kok Siong Ang, Marion Chevrier, Xiaomeng Zhang, Nicole Yee Shin Lee, Michelle Goh, and Jinmiao Chen. 2020. “A Benchmark of Batch-Effect Correction Methods for Single-Cell RNA Sequencing Data.” Genome Biology 21: 12. https://doi.org/10.1186/s13059-019-1850-9.
Trapnell, Cole. 2015. “Defining Cell Types and States with Single-Cell Genomics.” Genome Research 25: 1491–98. https://doi.org/10.1101/gr.190595.115.
Tsuyuzaki, Koki, Hiroyuki Sato, Kenta Sato, and Itoshi Nikaido. 2020. “Benchmarking Principal Component Analysis for Large-Scale Single-Cell RNA-Sequencing.” Genome Biology 21: 9. https://doi.org/10.1186/s13059-019-1900-3.
Wagner, Daniel E., and Allon M. Klein. 2020. “Lineage Tracing Meets Single-Cell Omics: Opportunities and Challenges.” Nature Reviews Genetics. https://doi.org/10.1038/s41576-020-0223-2.
Wolf, F. Alexander, Philipp Angerer, and Fabian J. Theis. 2018. “SCANPY: Large-Scale Single-Cell Gene Expression Data Analysis.” Genome Biology 19: 15. https://doi.org/10.1186/s13059-017-1382-0.
Wolock, Samuel L., Romain Lopez, and Allon M. Klein. 2019. “Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data.” Cell Systems 8: 281–291.e9. https://doi.org/10.1016/j.cels.2018.11.005.
Xi, Nan M., and Jingyi J. Li. 2021. “Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA Sequencing Data.” Cell Systems. https://doi.org/10.1016/j.cels.2020.11.008.
Yuan, Guo-Cheng, Long Cai, Michael Elowitz, Tariq Enver, Guoping Fan, Guoji Guo, Rafael Irizarry, et al. 2017. “Challenges and Emerging Directions in Single-Cell Analysis.” Genome Biology 18: 84. https://doi.org/10.1186/s13059-017-1218-y.
Zappia, Luke, and Alicia Oshlack. 2018. “Clustering Trees: A Visualization for Evaluating Clusterings at Multiple Resolutions.” GigaScience 7: giy083. https://doi.org/10.1093/gigascience/giy083.